Removal of pseudo-convergence in coplanar and near-coplanar Riemann problems of ideal magnetohydrodynamics solved using finite volume schemes

نویسندگان

  • A. D. Kercher
  • R. S. Weigel
چکیده

a r t i c l e i n f o a b s t r a c t Numerical schemes for ideal magnetohydrodynamics (MHD) that are based on the standard finite volume method (FVM) exhibit pseudo-convergence in which irregular structures no longer exist only after heavy grid refinement. We describe a method for obtaining solutions for coplanar and near-coplanar cases that consist of only regular structures, independent of grid refinement. The method, referred to as Compound Wave Modification (CWM), involves removing the flux associated with non-regular structures and can be used for simulations in two-and three-dimensions because it does not require explicitly tracking an Alfvén wave. For a near-coplanar case, and for grids with 2 13 points or less, we find root-square-mean-errors (RMSEs) that are as much as 6 times smaller. For the coplanar case, in which non-regular structures will exist at all levels of grid refinement for standard FVMs, the RMSE is as much as 25 times smaller.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Uniform Convergence of Finite Volume Schemes for Riemann Problems of Ideal Magnetohydrodynamics

This paper presents Riemann test problems for ideal MHD finite volume schemes. The test problems place emphasis on the hyperbolic irregularities of the ideal MHD system, namely the occurrence of intermediate shocks and non-unique solutions. We investigate numerical solutions for the test problems obtained by several commonly used methods (Roe, HLLE, central scheme). All methods turned out to sh...

متن کامل

Finite Volume Central Schemes for 3-dimensional Ideal MHD

We present second-order accurate central finite volume methods adapted here to three-dimensional problems in ideal magnetohydrodynamics. These methods alternate between two staggered grids, thus leading to Riemann solver-free algorithms with relatively favorable computing times. The original grid considered in this paper is Cartesian, while the dual grid features either Cartesian or diamond-sha...

متن کامل

Numerical Investigation on Compressible Flow Characteristics in Axial Compressors Using a Multi Block Finite Volume Scheme

An unsteady two-dimensional numerical investigation was performed on the viscous flow passing through a multi-blade cascade. A Cartesian finite-volume approach was employed and it was linked to Van-Leer's and Roe's flux splitting schemes to evaluate inviscid flux terms. To prevent the oscillatory behavior of numerical results and to increase the accuracy, Monotonic Upstream Scheme for Conservat...

متن کامل

Water hammer simulation by explicit central finite difference methods in staggered grids

Four explicit finite difference schemes, including Lax-Friedrichs, Nessyahu-Tadmor, Lax-Wendroff and Lax-Wendroff with a nonlinear filter are applied to solve water hammer equations. The schemes solve the equations in a reservoir-pipe-valve with an instantaneous and gradual closure of the valve boundary. The computational results are compared with those of the method of characteristics (MOC), a...

متن کامل

Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique

Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 283  شماره 

صفحات  -

تاریخ انتشار 2015